Saturday, June 8, 2019
Relationship Between Shape and Diffusion Rate Essay Example for Free
Relationship Between Shape and Diffusion Rate EssayAimTo see whether on that point is a relationship between the surface area and the dispersion rateHypothesisI predict that the smaller blocks of agar-agar will turn clear, or diff aim first, as it has a smaller surface area. This is because in that respect is less surface area and volume for the sulphuric sultry to diffuse into.Apparatus* tierce sizes of agar, 20x20x20mm, 20x20x10mm, 20x20x5mm* 240ml of sulphuric sexually transmitted disease 80ml per beaker* 3 100ml beakers* Tile used for placing the agar* Tissue to wipe off the sulphuric acid off the agar* 3 scalpels* Ruler, measurable in mm* Stop clock* CalculatorMethod1. First, cut three pieces of sulphuric acid in the following sizes 20x20x20mm, 20x20x10mm, 20x20x5mm, as accurately as possible2. Next, fill the three beakers with 80ml of sulphuric acid from each one3. Then, prepare the stop clock, and make sure it is has been reset4. After, place the three blocks of agar into the sulphuric all at the same time, as well as starting the stop clock once the agar is in the sulphuric acid.5. Carefully arouse the three beakers using the scalpels.6. Watch until one of the blocks engender gone completely clear.7. Once one of the blocks have gone completely clear, stop the stop clock and take out the three blocks of agar and place on the tissue, and wipe off the excess sulphuric acid from the blocks of agar to prevent further diffusion with the two other blocks which have not been fully diffused to fully diffuse8. Cut the blocks in diagonal, through the middle and using a ruler, footprint how much of it has turned clear on each side.9. Record the data for time taken, and the depth of the clear part on the table.ResultsBlock number123Block dimensions/mm20x20x2020x20x1020x20x5Predicted order of clearing321Actual order of clearing321Time taken for clearing8mn56.29sDepth of clear part on block/mm345Surface area/mm240016001200Volume/mm800040002000Surface are to volume ratioOO.3OO.4OO.6ConclusionMy prediction as to which block will go clear first was correct, being the smaller block, as its surface area to volume ratio was the greatest out of all three, even though there was not much difference between the three values. This is because the third block has a greater surface area for the sulphuric acid to diffuse into the agar, cause the diffusion rate to be greater. The blocks have become clear through diffusion caused by neutralization between the sulphuric acid and the agar, which is an alkaline.Evaluation rather a few things did not go as planned in this evaluation, but I have come up with ideas on how to improve them if we do an experiment like this again. Firstly, the jelly size whitethorn not be accurate from cutting it, and when it has been stirred, bits of it may have chipped off causing a neuter in its surface area. Next time, to avoid this, we could appraise the block of agar more accurately when cutting it, and also be more careful when soul-stirring the agar and stir softer so that no bits may get chipped off.Not only that, but the time we place the three blocks of agar into the sulphuric acid may be different, as well as the time we started the stop clock. Next time, we may possibly find a different method of position in and taking out the agar so that it remains a fair test, and so that there are less mistakes in the test, which may be reduced by having one person per block of agar and beaker, as well as another person for the stop clock and placing it in and taking it out all at the same time as well as starting and stopping the stop clock.Another complication may have come from the amount of sulphuric acid in each beaker, which may not have been equal. This problem may be reduced by cadence the sulphuric more carefully, maybe with a measuring cylinder before then placing it into the beaker, instead of measuring it into the beaker straight away.Our measurements of the depth of the clear layer o f the blocks of agar jelly may have been incorrect as well, and to prevent this, we could possibly use a microscope next time and use a graticule to measure the depth that the jelly has diffused to obtain a more accurate result.The last problem I noticed while doing the experiment was when we were blotting the sulphuric acid off the agar. I found that there may have been some sulphuric acid left on the agar after we have blotted it, which may have caused further diffusion and adjusting our result. This is caused from not blotting off enough sulphuric acid off the agar. Next time, we could carefully blot all the sulphuric acid, and use one piece of tissue for each block of agar so that there is no sulphuric acid on the tissue before blotting each block of agar.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.